Canine sperm
Mineral salts

How to Cite

n Vui, N. V., Quyen, N. T. K., & y Linh, N. T. (2022). Effects of Mineral Salts on Chilled Canine Sperm Quality. Journal of Science, Engineering and Technology (JSET), 10, 29-36. Retrieved from https://ijterm.org/index.php/jset/article/view/420


Mineral ions have essential roles for maintaining osmotic balance, forming parts of primary enzymes relating to the sperm metabolism and function. This study was conducted to evaluate the effects of mineral salts as supplement to semen extender on chilled canine sperm quality during 10 days of storage. The sperm motility was performed by computer assisted sperm analysis (CASA). The plasma membrane integrity, acrosome membrane integrity, and mitochondrial membrane potential parameters were determined using a fluorescent staining combination. The results showed that although the percentage of sperm motility and sperm plasma membrane integrity in the mineral salts and the control extenders were not markedly different during the first 6 days of storage (P>0.05), the acrosome membrane integrity, mitochondrial membrane potential and the healthy sperm parameters in the mineral salts extender was substantially higher than that in the control extender during this period (P<0.05). Notably, the sperm quality of sperm in the mineral salts extender decreased rapidly after the first 6 days and evidently lower than that in the rest extender (P><0.05). In conclusion, the mineral salts extender can improve sperm quality in chilled canine sperm during 6 days of storage.><0.05). In conclusion, the mineral salts extender can improve sperm quality in chilled canine sperm during 6 days of storage.



Asghari, A., Akbari, G., & Galustanian, G. (2016). Magnesium Sulfate Improves Sperm Characteristics Against Varicocele in Rat. Crescent Journal of Medical and Biological Sciences, 3(2), 55–59.

Celeghini, E. C. C., De Arruda, R. P., De Andrade, A. F. C., Nascimento, J., & Raphael, C. F. (2007). Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes. Reproduction in Domestic Animals, 42(5), 479–488. https://doi.org/10.1111/j.1439-0531.2006. 00810.x

Demaurex, N., & Distelhorst, C. (2003). Cell biology: Apoptosis - The calcium connection. Science, 300(5616), 65–67. https://doi.org/10.1126/science.1083628

Giorgi, C., Romagnoli, A., Pinton, P., & Rizzuto, R. (2008). Ca 2 + Signaling , Mitochondria and Cell Death. Current Molecular Medicine, 8(1), 119–130.

Hori, T., Masuda, T., Kobayashi, M., & Kawakami, E. (2017). Role of prostatic fluid in cooled canine epididymal sperm. Reproduction in Domestic Animals, 52(4), 655–660. https://doi.org/10.1111/rda.12963

Juyena, N. S., & Stelletta, C. (2012). Seminal plasma: An essential attribute to spermatozoa. Journal of Andrology, 33(4), 536–551. https://doi.org/10.2164/jandrol.110.012583

Linde-Forsberg, C. (1991). Achieving canine pregnancy by using frozen or chilled extended semen. The Veterinary Clinics of North America: Small Animal Practice, 21(3), 467–485. https://doi.org/10.1016/S0195-5616(91)50 054-1

McCormack, J. G., & Denton, R. M. (1989). The role of Ca2+ ions in the regulation of intramitochondrial metabolism and energy production in rat heart.Molecular and Cellular Biochemistry, 89(2), 121–125. http://www.ncbi.nlm.nih.gov/pubmed/2682 206

Owczarzy, R., Moreira, B. G., You, Y., Behlke, M. a, & Walder, J. a. (2008). Supporting information to Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry, 47, 5336–5353. https://doi.org/10.1021/bi702363u

Ponglowhapan, S., Essen-Gustavsson, ´ B., & Linde Forsberg, C. (2004). Influence of glucose and fructose in the extender during long-term storage of chilled canine semen. Theriogenology, 62(8), 1498–1517. https://doi.org/10.1016/j.theriogenology.20 04.02.014

Rodenas, C., Parrilla, I., Roca, J., Martinez, E. A., & Lucas, X. (2014). Quality of chilled and cold-stored (50C) canine spermatozoa submitted to different rapid cooling rates. Theriogenology, 82(4), 621–626. https://doi.org/10.1016/j.theriogenology.20 14.05.022

Rota, A., Strom, B., & Linde-Forsberg, C. (1995). Effects of seminal plasma and three extenders on canine semen stored at 40C. Theriogenology, 44(95), 885–900. https://doi.org/0093-691X(95)00278-2

Santo-Domingo, J., & Demaurex, N. (2010). Calcium uptake mechanisms of mitochondria. Biochimica et Biophysica Acta, 1797 (6–7), 907–912. https://doi.org/10.1016/j.bbabio.2010.01.0 05

Shahiduzzaman, A. K. M., & Linde-Forsberg, C. (2007). Induced immotility during long-term storage at +50C does not prolong survival of dog spermatozoa. Theriogenology, 68(6), 920–933. https://doi.org/10.1016/j.theriogenology.20 07.07.006

Smith, A. M. J., Bonato, M., Dzama, K., Malecki, I. A., & Cloete, S. W. P. (2018). Mineral profiling of ostrich (Struthio camelus) seminal plasma and its relationship with semen traits and collection day. Animal Reproduction Science, 193(3), 98–106. https://doi.org/10.1016/j.anireprosci.2018. 04.004

Verstegen, J. P., Onclin, K., & Iguer-Ouada, M. (2005). Long-term motility and fertility conservation of chilled canine semen using egg yolk added Tris-glucose extender: In vitro and in vivo studies. Theriogenology, 64(3), 720–733. https://doi.org/10.1016/j.theriogenology.20 05.05.035

Walsh, C., Barrow, S., Voronina, S., Chvanov, M., Petersen, O. H., & Tepikin, A. (2009). Modulation of calcium signalling by mitochondria. Biochimica et Biophysica Acta, 1787(11), 1374–1382. https://doi.org/10.1016/j.bbabio.2009.01.0 07

Wong, W. Y., Flik, G., Groenen, P. M. W., Swinkels, D. W., Thomas, C. M. G., Copius-Peereboom, J. H. J., Merkus, H. M. W. M., & Steegers-Theunissen, R. P. M. (2001). The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reproductive Toxicology, 15(2), 131–136. https://doi.org/10.1016/S0890-6238(01)00 113-7